
CPS311 Lecture: Memory Hierarchies

Last Revised August  6,  2015
Objectives:

1. To introduce cache memory
2. To introduce logical-physical address mapping
3. To introduce virtual memory

Materials

1. Memory System Demo
2. Files for demo: CAMCache1ByteLine.parameters, 

CAMCache8ByteLine.parameters, DMCache.parameters, SACache.parameters, 
WBCache.parameters, NonVirtualNoTLB.parameters, 
NonVirtualWithTLB.system, Virtual.parameters, Full.parameters

I. Introduction

A. In  the previous lecture, we looked at the basic building blocks of  
memory systems: the individual devices.  We now focus on complete 
memory systems.  

B. Since every instruction executed by the CPU requires at least one 
memory access (to fetch the instruction) and often more, the 
performance of memory has a strong impact on system performance.  In 
fact, the overall system cannot perform better than its memory system.

1. Note that we are distinguishing between the CPU and the memory 
system on a functional basis.  The CPU accesses memory both 
when fetching an instruction, and as a result of executing 
instructions that reference memory (such as lw and sw on MIPS).

2. We will consider the memory system to be a logical unit separate 
from the CPU, even though it is often the case that, for 
performance reasons, some portions of it physically reside on the 
same chip as the CPU.

1



C. At one point in time, the speed of the dominant technology used for 
memory was well matched to the speed of the CPU.  This, however, is 
not the case today (and has not been the case - in at least some 
portions of the computer system landscape - for decades).

1. Consider the situation as it exists today.

a) The dominant technology used for building main memories is 
dynamic RAM chips.  However, DRAM chips have a typical 
access time of 60-80 nanoseconds, and a cycle time about twice 
that.  Thus, if all instructions were contained in such memory, 
the rate at which instructions could be fetched from memory 
would be less than 20 million per second.

b) But today’s CPU’s are capable of executing instructions at rates 
in excess of 1 billion per second - a 50 to 1 (or worse) speed 
mismatch!  If a main memory based on DRAM were the only 
option, there would have been no reason to build CPU’s faster 
than we had in the early 1990’s!

2. With present technologies, it does turn out to be possible to build 
very fast memories (that can deliver instructions as fast as the CPU 
can execute them), but only of very limited size.  

For example: static RAM on the same chip as the CPU can 
function at the same speed as other CPU components.   However, 
static RAM consumes a lot of power, since one side of the flip-flop 
for each bit is always on, And this generates a lot of heat; 
therefore, the amount of static RAM that can be put on the CPU 
chip is relatively small (typically < 100 KB).

3. OTOH, it is also possible to build very large memories, but using 
technologies that are quite slow compared to that of the CPU.

For example hard disks can store 100’s of GB of data for minimal 
cost.  But hard disk is slow - a typical access time of about 10 ms, 
which is 107 times as long as a clock cycle on a 1 GHz CPU!

2



4. This speed versus capacity and cost tradeoff has been true 
throughout most of the history of computer technology, even 
though specific devices have varied.  [ If it ever became possible to 
produce memory that was both very fast and very large, this lecture 
topic would go away! ]

D. We will see that memory systems are seldom composed of just one 
type of memory; instead, they are HIERARCHICAL systems 
composed of a mixture of technologies aimed at achieving a good 
tradeoff between speed, capacity, cost, and physical size.  

1. The goal is to produce an overall system that exhibits the speed 
that is close to that of the fastest technology and the capacity of the 
largest technology. 

2. This goal is achievable because, at any point in time, a program is 
typically only accessing a very small subset of the total memory it 
uses - a principle known as LOCALITY.

a) TEMPORAL LOCALITY: most of a programs references to 
memory are to locations it has accessed recently.

This is because a program spends most of its time executing various 
loops.  While executing a loop, the program keeps executing a 
relatively small group of instructions over and over, and typically 
accesses a small set of data items over and over as well.   

b) SPATIAL LOCALITY: if a program references a location in 
memory, it is likely to reference other locations that are 
physically near it.

This arises because instructions occur sequentially in memory, 
and data structures such as objects and arrays occupy sequential 
locations in memory.

3



3. Thus, the instructions and data the program is currently using are 
typically small enough to be kept in the fastest kind of memory.

E. A typical computer system may have three basic kinds of memory, which 
constitute different levels in the hierarchy

Cache memory Small but fast

Main memory
(Typically called RAM)

Virtual 
memory

Very 
large
but
slow

1. Different technologies are used for each level.

a) Main memory is typically implemented using DRAM

4



b) Cache memory is typically implemented using SRAM - sometimes on 
the same chip as the CPU; sometimes on separate chips.  

Today’s systems often have two or even three levels of cache, (called 
L1, L2, and sometimes L3 cache).  (However, we will develop some 
of our examples using just a single level of cache for simplicity)

c) Virtual memory makes use of  disk.

2. Only one of these levels is actually necessary - main memory.

a) Historically, at one time personal computers needed only this. 

b) Today, embedded systems often have only this.

c) In fact, from an interface standpoint, the memory system is 
made to look to the CPU as if it were entirely main memory. 
(Cache speeds things up, and virtual memory makes the 
memory system appear larger than main memory physically is - 
but the overall system looks like main memory to the CPU).

3. Each item has a logical address, whose size is dictated by the ISA of the 
CPU.  (For example, if the CPU is 32 bit, then the logical address of an 
item is a 32 bit number; if it is 64 bit, then the logical address may be 64 
bits or may be a smaller number like 48 bits ).  

The logical address, then, represents the location in main memory where 
the item exists (or would exist if main memory were large enough)

CPU

Logical
Address 

Data

Memory
System

5



a) If the memory system consisted only of one level, then the 
physical address of an item in main memory would be the same 
as its logical address.  (And a logical address which did not 
correspond to any physical address would be an error - e.g. if a 
certain system had only 1 GB of main memory, then any 
address greater than 0xf3ffffff would cause an exception.)

b) However, in a multi-level hierarchy, some addresses will not be 
present in all levels.

(1)For example, if a system uses a 32 bit address (corresponding to 
4 GB of logical addresses), but it has - say - 128 MB of cache 
and 1 GB  of main memory, then fully 3/4 of the possible 
logical addresses cannot correspond to any location in main 
memory, and 31/32 of the possible logical addresses cannot 
correspond to any location in cache.

(2)Thus, we must distinguish between the logical address of an 
item and the physical address where an item might be stored 
in some level of the hierarchy.   Moreover, a given item that 
is present in multiple levels might be stored at different 
physical addresses in the different levels, though its logical 
address is the same in all three.

(3)A given item may reside in one, two, or three of the levels of the 
memory system.  Typically, though the system is designed in 
such a way that, if an item is present in cache, it is also present in 
main memory; and often, if is present in main memory it is also 
present on disk as well.

Note that we sometimes speak of “moving” an item from one 
level of the hierarchy to another.  This is really a misnomer - 
what is done is to copy the item, causing it to exist in both places.

c) It is also possible that a logical addresses may be totally invalid - 
i.e.it may not correspond to any item present at any level - in which 
case using it to try to access an item would result in an exception.

6



F. We speak of the series of memory references generated by the CPU as 
the reference string.  The reference string consists of a logical address 
plus the operation begin performed (read or write)

1. Example: suppose we were executing a block of code like the 
following (which corresponds to x ++ in C)

lw	 $2, x
addi	 $2, $2, 1
sw	 $2, x

In this case, the CPU’s reference string might look like the 
following (if the program were at memory locations 0x1000 and 
up, and x were at 0x3000)

Read 0x00001000  # instruction fetch
Read 0x00003000  # read original value of x
Read 0x00001004  # instruction fetch
Read 0x00001008  # instruction fetch
Write 0x00003000 # write updated value of x

2. Observe that he majority of accesses to a memory system are 
reads.  This is true because every instruction involves one read (to 
fetch the instruction), and load instructions (or their equivalent) are 
more common than store instructions.  Typically, on the order of 
80-90% of the accesses to memory are reads, rather than writes. 

a) When the CPU attempts to read an item - by specifying its 
logical address, the memory system checks to see if the item is 
in cache.  

(1) If so, the requested item is delivered from cache without 
checking the slower but larger levels.   (If there are several 
levels of cache, each is tried in turn, starting with the fastest)

7



(2) If the desired item is not present in cache, but is in main 
memory, it is copied to cache (“bumping” some other item if 
necessary to make room) and is delivered to the CPU.  
(Often the delivery of the item to the CPU is done in parallel 
with the updating of cache).

(3) If the desired item is not present in main memory either, 
then it is either present on disk, or the address is invalid.  If 
it is present on disk, it is copied to main memory 
(“bumping” some other item if necessary to make room) and 
also to cache.

b) Writes are a bit more complicated.  Typically, an item is written 
to the fastest cache.

(1) If no item with that address is present, some item is 
“bumped” to make room for it.  

(2)Eventually, an item that has been written to  cache must also 
be written to main memory and  to the swap file - but 
whether this is done immediately or at some future time 
varies (we’ll talk about this later).  (If the cache itself has 
multiple levels, the item must eventually be written  to all 
levels.)  A consequence of the possibility of deferring a write 
to a lower level is that lower levels of the hierarchy may 
contain a “stale” version of some data item.

c) This strategy ensures that the items accessed most recently are 
present in the fastest cache, from which it will be fast to access 
them again (e.g. if the access occurs in a loop.)

d) Memory systems are typically designed to optimize reads, 
while not penalizing writes.

8



II. Cache Memory

A. One technique used to improve overall memory system performance 
is CACHE MEMORY. 

1. At one time, cache memory was a feature generally found only in  
higher-end computer systems.  However, as CPU speeds have 
continued to increase while memory speeds have not, cache 
memory has become a necessity on desktop and laptop computer 
systems as well.

a) About 15-20 years ago, common CPU clock speeds were on the 
order of 4-16 MHz, and DRAM cycle times on the order of 
70-80 ns. Under these circumstances, it would be possible to 
perform a memory access every 1-2 clock cycles.

b) Today, CPU clocks have gone above 1GHz, while DRAM 
access time has improved only slightly, to about 60 ns.  Thus, 
an access to main memory takes on the order of 60 clocks or 
more!  

c) Since a pipelined CPU is designed to execute one or more 
instruction per clock, and since each instruction must be fetched 
from memory, execution of one (or more) instructions per clock 
is critically dependent on the use of cache memory.

2. Cache memory is a small, high-speed memory, logically located 
between  the CPU and the rest of the memory system. 

a) At one point in time, cache memory was usually separate from 
the CPU.

b) Today's high-speed CPU's depend on having cache memory on 
the CPU chip that operates at the same speed as the CPU itself.  
This has been made possible by improved chip manufacturing 
techniques that allow more transistors per chip.

9



c) Actually, most systems now use a two or three level cache, 
some cache  on the CPU chip and a larger, separate (and 
slower) secondary or tertiary cache. 

d) It is also common to find - at least at the L1 cache level -  that 
separate caches are used for instructions and data.  This 
facilitates having separate paths to memory for the instruction 
fetch unit and the data memory access unit of a pipelined 
machine.

3. Cache memory works because of the phenomenon of locality of 
reference.

a) Each memory read is first tried against the cache.  If the data is 
found there (a "hit"), the processor can proceed at maximum  speed.

b) Otherwise, we have a cache miss and the processor must wait 
for a  slower access to secondary cache or (if there is a miss 
there too) to main memory.

4. To function effectively, a caches must hit most of the time.  The 
percentage of memory references that are found in the cache at any 
level - rather than going to the next level - is called the HIT RATE.  
To see why this is important, suppose we have a 2 GHz CPU.

a) Theoretically, the time to execute an instruction (if the CPU is fully 
pipelined) is as little as 0.5 ns.  It must be able to reference memory 
(to fetch and instruction or read/write a data item) in 0.5 ns.

b) Suppose, however, that main memory requires 100 ns to do an 
access (including bus overhead).  Suppose further that there is a 
a single, on-chip cache that has a hit rate of 90%.  Then 90% of 
memory references can be done in 0.5 ns, but 10% require 100 
ns. (We call 100 ns the miss penalty) So the average time per 
reference becomes 

10



0.9 x 0.5 ns + 0.1 x 100 ns = 10.45 ns 

which is equivalent to reducing the clock rate by a factor of 
over 10! 

c) With a 95% hit rate, the average time drops to

0.95 x 0.5 ns + (0.05) x 100 ns = 5.48 ns - almost twice as good, 
but still not close to what we would expect knowing only the 
clock rate.

5. Multi-level caches are useful when - as is the case here - there is a 
wide variation between speeds of the different levels of memory

For example, if we add a 10 ns secondary  cache that hits 90% of 
the primary cache misses, we get an  average reference  time of

0.95 x 0.5 ns + (0.05) x (0.9) x 10 ns + (0.05) x (0.1) x 100 ns = 
0.48 ns + 0.45 ns + 0.5 ns = 1.43 ns

(which is still like more than cutting the clock speed in half)  

6. As these examples show, CPU clock rate alone tells you little about 
overall execution speed without some knowledge of how the 
caches perform!

B. In principle, a cache is an a content addressable (associative) memory 
containing pairs of the form:

tag (location in main memory)             value

1. A content addressable memory is one in which items are looked up 
based on their content, rather than the location where they reside.  
In a cache, the tag represents the logical address - i.e. the location 
in main memory where the entry resides - which generally has 
nothing to do with the location in cache where it resides.

11



DEMO: Load CAMCache1ByteLine.parameters

Access 1000, then 1100, then 1000 again.  Note how second access 
is much faster 

Note that we do not attempt to lookup entries based on their 
location in the cache - e.g. we do not need to support an operation 
such as “what is the entry in slot 2?” - rather we look up entries 
based on the stored tag value.

2. Usually, the “value” part of a cache entry holds more than just one 
byte, even on a byte-addressable machine.  To see why, consider a 
system that uses a 32-bit logical address.  Each cache entry, then, 
would need a 32 bit tag.  If each entry held just one byte of data, 
then the total size of an entry would be 40 bits - of which just 20% 
would be useful data and 80% would be overhead.

Instead, it is common to have each entry in the cache contain 
several successive bytes - called a line or block.  For example, 
many systems use a cache based on entries holding 8  consecutive 
bytes of data. 

a) In this case, the tag would consist of the upper 29 bits of the 
logical address.  

b) A logical address generated by the CPU could be interpreted by 
the cache as follows:
	

 	



	



tag byte in
block

31 3  2  1   0...

3. Another benefit of using a multi-byte block size in the cache is that 
it allows a memory reference to a word to be done in one 
operation.

12



DEMO: Load CAMCache8ByteLine.parameters

DEMO Accessing (as a word) 1000, then 1004

(Actually, for Level 2 cache it is common to use very large block 
sizes - e.g. 128 bytes.  This is done to take advantage of spatial 
locality.  When a reference to an item not present in Level 2 cache 
occurs, an entire block of (say) 128 bytes is copied from main 
memory to cache - including the desired item and many of its 
neighbors - in the hope that one or more of the neighbors will be 
needed soon and will already be in the cache.  (Note: the transfer 
of data from main memory to the cache may require multiple bus 
cycles, but this is actually done in parallel with the computation 
using the originally-requested item))

4. Caches are designed to support reads.  Writes may still involve an 
access to main memory.

a) If the location to be written is currently in the cache, it can be 
updated there - but some provision for updating main memory 
must also be made.  The simplest strategy is called write 
through.

DEMO: Writing (as a long) the content of 1000.

However, in practice it is often possible to do the write through 
in parallel with the original operation (and subsequent 
operations that do not write through).

(Note, in demo, how write through time is reported separately)

b) When writing through, an entire line must be written.

DEMO: Writing (as a byte) the content of 1000

c) If the line is not in the cache, and an entire line is being written, it can 
simply be added to the cache and written through to main memory

DEMO: Writing (as a long) the content of 1010

13



d) But if less than a full line is being written, and the line is not in 
the cache, it is actually necessary to first get the full line, then 
change the desired portion, then write the full line back - since 
data is transferred to/from cache in full-line units only.

DEMO: Writing (as a byte) the content of 1020

In this case, the use of the cache actually increases the time 
needed for the operation, since the fetch of the original line 
must be done before the cache can be updated, and then an 
additional write through must also be done afterward.

C. In principle, a cache is a large content-addressable memory as in the 
examples; however, a large fully content addressable (associative) 
memory is impractical.  Algorithms such as binary tree search are 
useless for cache since we must get the answer in one step.  For 
example, in a cache of 10,000 entries, the tag portion of each address 
emitted by the CPU would have to be compared to the tags of all 
10,000 entries at the same time.  Even if the required number of 
comparators could be economically built, the  incoming address 
would have to drive 10,000 logic loads.  This would  require several 
layers of buffering (since a typical gate output can   drive about 10 
others), which would inject intolerable delays.  Therefore one of 
several approximations to associative memory is used.

D. Direct mapping cache.

1. Entries in the cache are triples of the form

valid	

 tag	

 value (typically 8-128 bytes - assume 8 for this example)

where valid is a single bit that is true (1) if the entry contains valid 
data and false (0) if it does not

2. The number of entries is always a power of 2.  Suppose it is 2n.  

14



3. Consider the entries to be numbered 0 .. 2n - 1.  Then a logical 
address (assume 32 bits) is interpreted by the cache as follows:

tag (32-n-3 bits) byte in
block

31 3  2  1   0n+3 n+2

entry number (n bits)

that is, any given logical address, if it occurs in the cache at all, 
must occur in entry number (logical address / 8) % 2n.

4. When it is desired to look up a logical address to see if it is present 
in the cache, an entry number is calculated as (logical address / 8) 
% 2n.  This one entry is checked.  

a) If the tag stored there matches the tag portion of the desired 
address, and the valid bit is set, then there is a cache hit, and the 
value in the entry contains the data sought.

b) If the entry is invalid, or the tags do not match, then there is a 
cache miss.  In this case, a complete block of data is obtained from 
memory.  It is stored (along with the tag portion of its address) in 
the  cache for future use, replacing the entry currently there.

5. A consequence of this scheme is that the address in main memory 
that corresponds to some entry in the cache is determined by 
combining its tag with the location in the cache where it occurs - 
e.g. if a cache of 64 entries uses 8-byte blocks, and the entry in slot 
2 has tag 18, then its value corresponds to the contents of main 
memory locations:

00000000000000000011000 000010 000 ... 
00000000000000000011000 000010 111

 = 00003010 .. 00003017 

DEMO: DMCache.parameters - access byte at 3010, 3017

15



6. Of course, this scheme implies that at any time at most one entry with 
any given pattern in its n entry-number bits can be in the cache.  

This is usually not a problem, because successive locations in memory 
map either to different bytes in the same block, or to different entries in 
the cache - e.g.

Suppose we have a direct mapping cache like the above.  Then:

logical addresses 0x0 .. 0x7 map to entry 0 of the cache
logical addresses 0x8 .. 0xf map to entry 1 of the cache
logical addresses 0x10 .. 0x17 map to entry 2 of the cache
...
logical addresses 0x3f8 .. 0x3ff map to entry 63 of the cache

DEMO Accessing 0x0, 0x3f8

So, unless we’re executing a very large loop, all of the code for the body 
of a given loop can easily fit in the cache without collisions (especially 
given that caches are typically a lot bigger than this demo!)

7. However, not only do logical addresses 0x0-0x7 map to entry 0 of 
the cache, but so do 0x400 .. 0x407, 0x800 .. 0x807 ...

DEMO Accessing 0x400
.
a) It is easily possible that an instruction in a loop might collide in 

the cache with some data item accessed by the loop of which it 
is a part (i.e the code and data differ in address by some 
multiple of <total cache size>.)  (This can be avoided by using 
separate caches for instructions and data, as is often the case 
with Level 1 caches, though not with other levels).

b) Or suppose a loop calls a procedure whose address is some 
multiple of <total cache size>. away from the loop body, or if 
there are accesses in a loop to two  data structures whose 
addresses are some multiple of <total cache size>. apart.  Such 
problems cannot be avoided by using separate instruction and 
data caches.

16



c) In a case where there is a collision like this, the replacement 
policy of the cache could actually hurt performance - e.g. if we 
alternately reference two items that collide, we might get 
something like this:

Item A referenced - moved to cache
Item B referenced - replaces A in cache
Item A referenced - replaces B in cache
... 

DEMO: Alternate accesses to 0x0, 0x400

E. Set Associative Cache

1. This is an improvement on direct mapping.  It can address the 
problem we just discussed.  

2. The cache entries are divided into sets - typically involving 2 or 4 
entries.  (Note that this means that the number of sets is - say  - 1/2 
or 1/4 the total number of entries.)   Each entry has the same form 
as before.

3. A memory address is interpreted as follows.  (The example 
assumes a 2-way set associative cache with 2n entries and hence 
2n-1 sets.)

tag (32-n-2 bits) byte in
block

31 3  2  1   0n+2 n+1.

set number (n-1 bits)

a) The middle bits of the logical address select not one entry in the  
cache, but a set of entries.  The tags for each entry in the set are 
compared in parallel with the desired logical address, and if one 
matches (and is valid) there is a hit.  (Parallel comparison of a 
few tags does not pose the kind of problem that made pure 
content addressable memory impractical).

17



b) When a reference is not found in the cache, one of the entries  
in the set must be replaced.  This is may be done either in first-
in first-out fashion, or in least recently used fashion, or 
randomly (which actually works fairly well!).

DEMO: SACache.parameters - accesses to 0x0, 0x400, 0x0

4. An issue in the design of set associative caches is set size

a) A set size of two is commonly used, because it is simpler to build.

b) A set size of four has been found experimentally to give 
marginally better hit/miss performance.  Note that going from a 
set size of 2 to 4 - for a given total size cache - results in there 
being half as many sets, and hence twice the possibility of 
collision between two items.  However, it takes 5 items 
colliding before replacement gets in the way.

c) Experimental evidence suggests set sizes greater than 4 produce 
no significant gain.

F. Issues with regard to caches

1. Validity of cache items.

a) When the system is first started up, or when there is a change of user 
in a multiprogrammed environment, the cache will not contain valid 
data until a sufficient number of reads have been done. At such 
times, the valid bit for each entry in the cache is cleared, to be set 
later when an entry is copied from main memory.  

Of course, in a set associative cache each member of a set must have 
its own valid bit

DEMO: Highlight this aspect

18



b) There may be a provision for the operating system to invalidate   
cache entries wholesale when a context change to a new user is done.  

2. Write-through versus write-back 

a) We’ve already looked at one approach to the problem that arises 
when a memory access is a write rather than a read?   In a 
write-through cache, the data is written both to main memory 
and to cache at the same time. This slows the system down 
some (though the CPU can go on to the next instruction while 
the memory write occurs).  The slowdown is  not drastic since 
writes are proportionally rare.

b) An alternative strategy is called write-back.  In a write-back cache, 
the data is written only to the cache.  Each cache entry includes a 
“written in” (dirty) bit, which is set to indicate that the cache entry 
contains a more recent value than main memory.

When a cache entry is  selected for replacement by a new entry, it is 
then written to main memory, if the written in bit is set.  This avoids 
doing multiple writes to a single location in main memory.

DEMO: WBCache.parameters.  (This one is direct mapping again)

Write 0x0 - note no write-through, but cache line is now dirty.

Now write 0x400 - note write back.

c) Of course, with write back a cache line must be also be written 
back if it is invalidated by the operating system during a context 
change to a new user or as part of bringing in a new page, as we 
shall discuss soon.

d) There is a potential problem if a DMA IO device is to access 
data that has not yet been written back.  This can be handled by 
forcing the cache to be flushed to main memory before a DMA 
operation is initiated.

19



G. Caching as a general principle in CS

1. We have been discussing the concept of caching in terms of 
memory systems - which is where the idea originated.

2. But the same principle is used in many places in computer systems 
- i.e. the idea of keeping a copy of something you expect to access 
again soon in a place where it can be accessed more quickly.  
Examples?

ASK

a) Caching of web pages by a browser

b) Caching of web pages by an ISP

c) Caching of disk blocks by a disk controller

3. A problem that arises from caching wherever it is used is the 
possibility of having the cached copy of an item be inconsistent 
with the “official copy”.   (This occurs if another system has write 
access to the “official copy”.

a) In the case of memory caches, problems can arise if physical 
memory can be written by more than one device - e.g. by the 
CPU and a DMA controller, or by two CPUs.  In this context, it 
is known as the cache coherency problem.  

One approach to the cache coherency problem is to use what is 
called a “snoopy cache” - which is simply a cache that monitors 
the address lines for the memory it is caching and invalidates an 
entry it contains if the corresponding location is written to by 
some other device.

(We will not discuss this topic further here).

20



b) Other places where the problem can occur?

ASK

Example: The possibility that an update to a web page may not 
be seen because stale copies are cached by a browser or ISP.

(This creates an interesting issue when editing Java applets!)

III.Memory Mapping

A. Consider a computer system where two or more programs are running 
at the same time - perhaps two programs serving the same user, or 
programs serving multiple users.   Obviously, each program must have 
its own memory separate and distinct from the other programs.  How 
can this be accomplished?

1. The earliest solution was to require each program that coexisted 
with others to use different memory addresses.  This was of limited 
utility.

a) Most viable in cases where there was a fixed set of programs 
that would be running all the time, each of which was assigned 
to some fixed region of memory.

b) Not at all useful for a multi-user system, where several people 
might run the same program on different data. 

Example: in various labs, all of you have been using a single 
mips system, and all of your programs have used the same 
addresses, but obviously writes by one program did not affect a 
different program.

2. The solution that has proved viable for many years is to distinguish 
between logical addresses generated by a program and physical 
addresses in memory, and to insert a hardware memory management 
unit (MMU) between the CPU and the rest of the memory system that 
performs translation between one and the other.

21



	

	

	

	



CPU

Memory
Mangement
Unit

Physical
Memory

Logical Address

Physical Address

a) In a situation like this, we can distinguish the LOGICAL 
ADDRESS SPACE and the PHYSICAL ADDRESS SPACE.  

(1)The logical address space is the range of logical addresses 
that the CPU can generate, dictated by the ISA.

Example: For a 32-bit CPU, the logical address space is 
generally 0 .. 0xFFFFFFFF.

(2)The physical address space is the range of physical 
addresses, dictated by the amount of physical memory 
actually installed.

Example: If a system has 1 GB of physical memory, its 
physical address space may be 0 .. 0x3FFFFFFF

(3) In general, the two address spaces will not be of the same 
size.  

b) With this arrangement, it becomes possible for all programs to 
be created as if they used the same range of logical addresses; 
but the memory management unit would map the same logical 
address to different physical addresses for different programs/
users.

22



c) A by-product of this is that it provides an easy way to protect 
users from one another; if user A’s program uses some physical 
address, but no logical address in user B’s program maps to that 
physical address, then nothing that user B’s program can do can 
have any effect on user A.

d) Another by-product of this is that it is not necessary for 
physical memory to consist of contiguous addresses.  

Memory modules are generally designed in such a way that, if 
the module contains 2n bytes, then the physical addresses it 
corresponds to must be of the form xxxx (n zeroes) ..
xxxx (n ones) - where the upper part of the address (xxxx) is the 
same for all locations in the module.  It a memory system is 
constructed of modules of two different sizes, this can make 
assigning contiguous addresses difficult.

Example: suppose a memory system consists of a 1 GB module.  
Presumably, this would be configured to correspond to physical 
addresses 0 .. 0x3FFFFFFF  Now suppose the user adds a 2 GB 
module.  What addresses should be assigned to this module?

The contiguous addresses would be 0x40000000 .. 
0xBFFFFFFF.  But this would not fit the preferred way of 
assigning addresses to a module.  (The upper bits of the address 
are 00 for some addresses, 01 for others, and 10 for still others.) 

It would be better to leave a hole in the physical address space 
and assign the new module the addresses 0x80000000 .. 
0xFFFFFFFF.

Memory mapping makes this possible.

B. There are a number of ways to actually carry out this mapping.  We’ll 
only discuss one in detail - called PAGING.

23



1. The logical address space (range of logical addresses) is divided 
into pages of some fixed, power of 2 size.

Example: if a byte-addressable system uses a 32 bit address, its 
logical address space is 0 .. 0xffffffff = 4 GB.  Suppose we use a 
page size of 1 KB.  Then the logical address space can be thought 
of as being composed 4 mega (222) pages of 1024 bytes  each.  A 
logical address generated by the CPU is interpreted as follows:

page 
number

byte in page

31  010 9.

2. Physical memory is divided into page frames, each of which is of 
the same size as a page.  Thus, any logical page can be stored in 
any physical frame.

3. The memory management unit uses a page table, with one entry 
per page.  Each entry contains a frame number where the page is 
mapped, plus a valid bit (false means this logical page is not 
actually mapped and an address that references it is illegal) 

Example: Given the following page table:

Page number	

 Valid	

 Frame Number

0	

 0	

 N/A
1	 1	 7
2	 1	 5
3	 1	 12
4	 0	 N/A
5	 1	 8
...

The logical address 0x82A is interpreted follows:

0000 0000 0000 0000 0000 10 00 0010 1010

page number = 2	 	 	 byte on page = 0x2A 

24



which is mapped to frame 5 by the page table, meaning that the 
corresponding physical address is

0000 0000 0000 0000 0001 01 00 0010 1010

i.e. 0x142A

4. The memory management unit makes use of distinct page tables 
for each process (program running on the behalf of some user).  
Thus, while two different processes might generate the same 
logical address, the page table would generally specify a different 
mapping to a physical address for each.  (Some systems allow 
sharing of common libraries between processes so as to only have 
one copy residing in memory.)

C. Some issues with regard to paging

1. In addition to the frame number and a “valid” bit, the page table 
entry may also contain bits specifying protection for the page - e.g. 
a page table entry may specify that a certain page is read only [as 
might be the case if the same physical page is shared by two or 
more processes].

2. Where is the page table stored?

a) If the number of pages is small (memory is small, page size 
large), it may be possible to keep the page table in special 
registers in the memory management unit.  (This has been done 
on some systems)

b) More typically, the page table is itself kept in main memory.   

(1) In this case, the MMU contains a single register that 
contains the physical address of the start of the page table in 
memory.  

25



(2)The MMU performs a logical to physical address translation 
as follows:

(a) The page number is extracted from the logical address.

(b)The page number is multiplied by the size of a page table 
entry (often 4 bytes - in which case shifting left 2 places 
can be used)

(c) The result is added to the base address of the page table, 
contained in an MMU register.

(d)The resultant location in memory is read, and is used as a 
page table entry to calculate the physical address 
corresponding to the original logical address [ or to cause 
an exception to be thrown if not valid ].

DEMO: NonVirtualNoTLB.parameters - Read 1000

c) In this case, a context switch from one process to another 
requires simply loading this register with the address of the 
page table for the new process. 

3. With a large logical address space, the page table itself can be very 
large - for example, with a 4 GB logical address space and a page 
size of 1 KB, the page table needs 4 million entries.  If each entry 
is 4 bytes, that requires 16 MB for the page table!

a) To avoid this, it is common for the MMU to also include a 
“limit” register which specifies the actual size of the page table.  
When the MMU performs a mapping, it first checks the page 
number extracted from the logical address against the limit 
register.  If the page number is too large, the address is treated 
as invalid.

26



b) There are now two registers in the MMU that are part of the 
context of a process - the base address of the page table, and its 
size.

DEMO - Read 4000

c) It would seem, at this point, that we may have eliminated the 
need for a “valid” bit in each page table entry.  But actually, we 
haven’t - for two reasons:

(1)There might be a good reason for having a page number that 
is in the allowed range still be invalid.

Example: it is quite common to find that page 0 - though 
obviously in range - is made invalid, with no physical 
memory assigned to it.  Why?

ASK

Page 0 corresponds to logical addresses in the range 0 .. 
page-size - 1.  If we use 0 as a null pointer, then any attempt 
to dereference null will result in a memory management 
error.  Thus, by the expedient of “wasting” one entry in the 
page table (e.g 4 bytes), we get automatic hardware 
detection of attempting to use a null pointer.

DEMO: Read 0

(2)Virtual memory will also make use of the ability to flag 
pages  as invalid, as we shall see shortly. 

4. Now we get another problem, though.  We have previously said 
that process address space is often structured this way:

27



Code
Global Data
Heap

Stack

Smallest address

Largest address

Heap Growth

Stack Growth

a) But if we have a limit register whose value is based on the 
number of pages in low memory, then any logical address on the 
stack is necessarily invalid.

b) To handle this, it is possible to actually have two page tables 
per process - one used for mapping addresses in code/global 
data/heap space, and one used for mapping addresses in stack 
space. 

(1)The MMU uses a high order bit in the logical address to 
decide which one to use

(2)The limit register for the first page table specifies a 
maximum permissible page number; that for the second 
specifies a minimum permissible page number.

5. It is also possible to have an additional page table for use by 
system software.  

6. An interesting consequence of using address mapping is that the 
size of logical address space and physical memory can differ.

28



a) For example, with a 64 bit logical address on a byte addressable 
64-bit CPU, it is possible to specify 264 (16 quintillion) 
different addresses - far beyond the amount of physical memory 
such a system has now, or will be likely to have in the 
forseeable future.

(1)Actually, throughout much of computer system history, it 
has been the case - for most systems - that physical memory 
has been smaller than the range of permissible logical 
addresses.

(2)This is not a problem on a system using memory mapping - 
the maximum permissible size of memory mapped by all the 
page tables is limited to the amount of physical memory 
actually installed.

b) There have been cases where the reverse has been true: physical 
memory has been larger than the size dictated by the size of a 
logical address.  (E.g. this was often the case with 
minicomputers using a 16 bit logical address).  This is not a 
problem - the frame number can be larger than a page number, 
allowing the generation of a physical address that is longer than 
a logical address. 

(1)Of course, no one process could generate enough different 
logical addresses to access all of physical memory.

(2)However, on a multi-user system, the sum total of all the 
memory allocated to all the processes might make use of all 
the physical memory.

D. We’ll note briefly that there are a couple of other ways to do memory 
management other than paging.

29



1. One approach is called SEGMENTATION.  It differs from paging 
in that, while paging uses pages and frames of some fixed size, 
segmentation uses segments of variable size.   

a) A maximum segment size is established and can be used to split 
a logical address into a segment number and offset in segment.

b) A segment table (which is analogous to a page table) stores, for 
each segment, its base address in physical memory plus its size.

c) Mapping a logical to a physical address involves looking up the 
mapping information for the segment and adding the offset in 
segment to the base address for the segment - after first ensuring that 
the offset in segment does not exceed the segment size.

d) Pure segmentation has never worked well - because varying 
sized segments tend to produce “checkerboarding” of physical 
memory - e.g. one could end up with a situation like this, where 
the hashed regions represent memory that is unused.

It is quite conceivable that a process might need a segment 
which, while smaller than the sum total of all available memory, 
is still bigger than any one available chunk of memory.  This 
could necessitate a costly compaction of memory to move all 
the free space to a single block.

30



e) The Intel x86 chip family provides support for segmentation 
(with segment sizes limited to 64 KB), but modern versions of 
Windows do not use it.

2. Another approach is called SEGMENTATION WITH PAGING.  In 
this approach, each segment has its own page table which is 
actually used for mapping logical addresses to physical addresses.  

a) A logical address consists of a segment number, page in 
segment, and offset in page.

b) A logical address is mapped by using its segment number to 
locate the correct page table, and then mapping the rest of the 
address as with paging.

c) Variable segment size is handled by using different size page 
tables for each segment.

E. If you have been thinking carefully about what we’ve said about 
mapping, it has probably occurred to you that, if the page and/or 
segment table is itself kept in memory, then any attempt to access 
main memory actually requires two references - one to look up the 
translation, and one to do the actual access.

31



1. This would have the effect of halving the speed of main memory - 
not good.

2. The situation could be even worse when using segmentation with paging, 
which could require three references to memory (segment table, page 
table for the proper segment, actual location in memory)!

3. To reduce the impact of this problem, most virtual memory 
systems make use of a special kind of cache called a 
TRANSLATION LOOK-ASIDE BUFFER (TLB) which stores 
page table entries that have been used recently.  That is, a 
configuration like the following is used:

Logical
Address

TLB

Memory management unit

Main memory

Page table

Page table

...

Code and data belonging
to various processes

Page table base and limit
registers

• • • • • •

Physical
Address

32



a) When a logical address needs to be translated, the page number 
is extracted, and then the TLB is checked to see if it contains 
the translation (physical frame number) for this page.  If it does, 
the translation is done, and only the actual reference to the page 
in main memory is needed.

DEMO: (Note: complete system - not just parameters)
	

 	

 NonVirtualWithTLB.system - read 1000

b) If the TLB does not contain the translation, the page table in 
main memory is accessed to obtain the translation.  At the same 
time, a copy is stored in the TLB for future use (replacing some 
other entry).

DEMO: Read 2000

c) Because pages typically contain multiple instructions / data 
objects, it is usually the case that most of a program’s 
references to memory in an interval of time involve just a few 
distinct pages, and therefore most of the needed translations can 
be found in TLB.

d) In effect, a TLB serves as a cache for page translations.  Note that 
a TLB can be quite small - therefore, it may be practical to 
implement it as a fully content addressable (associative) memory, 
rather than using one of the techniques like direct mapping or set 
associative that we used for cache per se.

IV.Virtual Memory

A. Any of the memory mapping schemes we have discussed can be 
easily extended to yield VIRTUAL MEMORY.  We’ll use paging for 
our examples.

1. In a paging system, when the MMU attempts to translate a logical 
address, one of the following outcomes will occur:

33



a) A valid translation

b) The page number is outside the range of valid pages - i.e. there 
is no entry in the page table at all corresponding to that page 
number.

c) The address translates correctly, but the access violates the 
protection specified in the page table (i.e. attempting to write to 
a read-only page).

d) The page is invalid - i.e. no physical memory is actually 
allocated for that page.

Any one of b-d is an error which typically results in an 
exception that terminates the offending process.

2. Now suppose - as is often the case - that the sum total of the 
memory needs of all the processes on the system exceed the 
amount of physical memory available.  In this case, we cannot 
assign a frame to every page.  

a) However, it is typically the case that many of the pages that a 
program uses are either never used at all (e.g. specialized error 
handling code) or are not needed at some point during 
execution of the program (e.g. initialization code is not needed 
once the program gets into mainstream execution; termination 
code is not needed until the program finishes.)

b) Therefore, we could adopt the expedient of only assigning 
physical frames to some of the pages needed by a program, and 
flagging the page table entries for the rest as invalid.  
(Sometimes we may refer to this bit as “resident” to reflect this 
change in interpretation, but the hardware behavior hasn’t 
changed.) Copies of pages that are legitimate but not currently 
resident in memory can be kept on disk.

34



c) Now, if the program accesses a page that is inside the range of 
valid page numbers, but marked not present, there are two 
possibilities:

(1)The reference really is invalid, and this should be treated as 
an error.

(2)The reference is to a page that would be valid if we had 
enough physical memory - and hence, there is a copy of the 
desired page on disk.

This latter case is called a PAGE FAULT.

d) In the case of a page fault, we can resolve the problem as 
follows:

(1)Find an available page frame in physical memory - perhaps 
by “bumping” the page that is currently in to disk.   Moving 
a page to disk to make room for another is called PAGE 
REPLACEMENT.

(2)Copy the desired page from disk to this frame.

(3)Modify the page table to show the correct mapping, and set 
the resident bit to true.

(4)Re-start the instruction that failed.

(5)Note that this is a fairly complex and time-consuming 
process, especially given that disk accesses take on the order 
of 10 ms (about 100,000 times as long as main memory 
accesses).  

Thus, it is typically performed by software - specifically by 
code that is part of the operating system.  During the time 
that a process is unrunnable due to waiting for a needed 
page, some other process can be run instead.

35



(This stands in contrast to reading data from main memory 
into a cache, which must be handled by hardware because 
the time frame needs to be very short).

DEMO: Virtual.parameters - access 1000, then 1010

3. From a hardware standpoint, virtual memory is not terribly 
different from simple mapping.

a) From a hardware standpoint, a page fault may look just like an 
invalid page.  The operating system decides what is actually the 
case.

b) Since the page table entry for an invalid or not resident page is 
mostly unused (the resident bit says everything that needs to be 
said), the operating system may use these bits to store 
information it needs to handle a page fault - e.g. an indicator as 
to where to find the page on disk - or an indication that the page 
really is invalid.

c) Virtual memory does impose some additional hardware 
requirements.

(1)The ability to re-start an instruction that failed due to a page 
fault after it has been resolved.

(2)Several other abilities we will discuss shortly.

4. From a terminological standpoint, what we have been calling a 
“logical address” is often called a “virtual address” when virtual 
memory is used.  

B. The performance of a virtual memory system is critically dependent 
on the  frequency of page faults.

36



1. The rate of page faults is called the page fault rate.  It is vital that 
this be kept very low.

2. To see how important this is, recall the example we did earlier 
concerning a memory system with a two-level cache having the 
following parameters

Memory access time for level 1 cache: 0.5 ns
95% hit rate for level 1 cache
Memory access time for level 2 cache: 10 ns
90% hit rate for level 2 cache (that is, 90% of the 10% of references 
that are tried in Level 2 at all)
Memory access time for main memory: 100 ns

If virtual memory were not used (and hence there were no page faults), 
the average access time for this memory would be:

0.95 x 0.5 ns + (0.05) x (0.9) x 10 ns + (0.05) x (0.1) x 100 ns = 1.43 ns 

Now suppose we use virtual memory with the following parameters:

Access time for disk: 10 ms (recall that 1ms = 106 ns)
Page fault rate 1% (1% of the accesses to main memory result in a page 
fault)

Now the average memory access time is

0.95 x 0.5 ns + (0.05) x (0.9) x 10 ns + (0.05) x (0.1) x (0.99) x 100 ns 
+  (0.05) x (0.1) x (0.01) x 10 x 106 ns = 1.42 ns + 500 ns = 501.42 ns

over a 500 fold increase!

3. On the other hand, if we can get the page fault rate down to .001%, 
we can get an average memory access time of 

0.95 x 0.5 ns + (0.05) x (0.9) x 10 ns + (0.05) x (0.1)x(0.99999) x 
100 ns +  (0.05) x (0.1) x (0.00001) x 10 x 106 ns = 1.42 ns + 0.5 
ns = 1.92 ns

4. Several factors contribute to a low page fault rate

37



a) Appropriate selection of the page to be replaced when a frame 
needs to be replaced is critical.  We will discuss this below.

b) Paging systems take advantage of spatial locality by 
transferring data between disk and memory in units of whole 
pages.  This means that, if there has been a page fault for some 
item, other items physically near it (e.g. successive instructions 
or different fields in the same data structure) will likely also be 
brought into memory and will not themselves cause a page 
fault.

This, in turn, argues for a larger page size where possible.  
[ Typically, the page size is never greater than the block size of 
the disk - we don’t want to have to do multiple disk accesses to 
transfer a page! ]

c) The scheme we have described is called DEMAND PAGING - 
a page is brought into memory when it is demanded.  It is also 
possible to do some ANTICIPATORY PAGING - bringing a 
page into memory before it is actually needed because it is 
expected that it will be needed.

(1) If the blocks are clustered on the disk in such a way as to 
allow multiple blocks to be transferred in virtually the same 
time as one, several pages may be brought in from disk at 
once to take further advantage of spatial locality.

(2)When a program first starts up, its code pages may be loaded 
enmasse, rather than being faulted for individually.

(Actually, if this is not done, the system software can get the 
pages upon demand directly from the executable image on 
disk, rather than first transferring them to the paging file.)

38



(3)Anticipatory paging is really a software issue, rather than a 
hardware issue, though.

d) A virtual memory system can run programs whose total 
memory requirements exceed the amount of physical memory 
available.  The fact that the memory requirements of all current 
processes exceeds the available memory is called 
OVERALLOCATION.  

Empirically, at some point excessive overallocation can lead to 
a situation in which pages are replaced and then needed again 
soon - which leads to a high page fault rate and poor 
performance.  This condition - called thrashing - can result in a 
system becoming painfully slow.

To prevent thrashing, a system may totally swap out of memory 
a process if necessary to keep the overallocation for current 
processes within bounds.

C. Issues in the design of a virtual memory system

1. In our discussion of the resolution of a page fault above, we talked 
about the need for page replacement - periodically moving a page 
out of memory to make room for another.  

a) The choice of the page to replace will have a significant impact 
on the overall performance of the system.  If a page is replaced 
and then is needed again, it must be reloaded into memory from 
disk - a costly operation.

b) It can be proved that the optimal page replacement policy 
would be to replace the page whose next reference is furthest in 
the future.

Of course, if there is a page that is never going to be referenced 
again (e.g. it contains code that won’t be executed again), then 
replacing it would be optimal by this criterion (next reference 
infinitely far in the future).

39



c) Unfortunately, the optimal policy is generally not practical, 
since we don’t have the necessary knowledge.  Instead, a page 
replacement algorithm is chosen that gives the best possible 
approximation to optimal performance.  

(1)There are many possible page replacement algorithms.   This 
is actually a topic in operating system design we cannot 
pursue here.

(2)However, we can note that many of the algorithms rely on 
the page table incorporating an additional bit called the 
“referenced bit” in each entry.  (The textbook calls this the 
“used” bit - same meaning - different term)  When a 
mapping is performed, if the page table entry has its 
referenced bit off, it is turned on.  (If it is already on, it is left 
on.)   This bit provides information about recently used 
pages that various algorithms use because they rely on the 
principle of temporal locality to help them make a good 
choice.

2. Virtual memory systems always use a “write-back” policy, in the 
sense that writes are done to a page in memory, but are not done 
immediately to disk (since the time overhead of doing so would be 
huge).

a) A consequence of this is that we need to keep track of whether a 
page in memory has been modified by one or more write 
operations since it was copied from disk, so that the updated 
copy can be written to disk when the page is replaced by some 
other.  (If a page has not been modified since it was read from 
disk, there is no reason to write a copy back, given the 
computational cost of doing so.)

b) For this reason, the page table entry will contain a bit 
sometimes called the “modified bit” or the “dirty bit” which is 

40



set false when a page is copied in from disk, but true by the 
memory management hardware when a write operation is done 
to any location on the page.

c) Page replacement algorithms may give preference to replacing a 
page that is not dirty, rather than one that is, because the latter 
requires a write operation.  Of course, such a preference cannot be 
absolute - otherwise, a dirty page will never be replaced, which 
would not be a good idea if the page was not needed again.

V. Putting it All Together

A. Of course, almost all  current computer systems use both caching and 
memory mapping.  

1. One question that arises concerns the relative placement of the 
cache(s) and the MMU.

a) One possibility:

b) Another possibility:

c) Pros and Cons

(1)The first arrangement has the advantage that the MMU only 
has to translate virtual addresses that result from cache 
misses.  As a result, the MMU handles only a small fraction 
of all memory references.

41

CPU Cache MMU

Virtual
address

Physical
address

Main
Memory

CPU CacheMMU

Virtual
address

Physical
address

Main
Memory



Since translating an address may require a reference to a 
page table in memory (doubling the time needed for the 
reference) this placement reduces the likelihood of this 
occurring.  Indeed, it could even reduce the need for a TLB 
in the MMU, given that the MMU is invoked relatively 
infrequently.

(2)The second arrangement has the advantage that entries in the 
cache are based on physical addresses in main memory, 
which makes it easier to achieve cache coherence when 
multiple devices are accessing the same memory (e.g with 
DMA IO or on a shared memory multiprocessor)

d) In practice, a third arrangement is often used, in systems where 
there are two caches (as is almost always the case today)

(In the case of a system with dual/quad core CPU’s, each core 
has its own L1 Cache and MMU; but all cores share L2 Cache).

B. When a system uses two levels of cache plus memory management, a 
memory access can turn out to be quite complex.

DEMO: Full.parameters

Read 1000 - first reference to page
Read 1004 - found in L1 cache
Read 1020 - found in L2 cache
Read 1080 - found on resident page
Read 2000 - fetches a new page

42

MMUCPU L2 
Cache

L1 

Virtual
address

Physical
address

Main
Memory



C. If a system uses cache and/or virtual memory. the pattern of memory 
accesses by a program may have a significant impact on its 
performance.

1. Recall that both cache and virtual memory depend on locality of 
reference to minimize the number of accesses to slower speed memory.  

2. Consider the following problem, to be run on a computer that uses 
a 32 KB L1 data cache with a block size of 8.

a) We have a 1000 page document for which we want to prepare an 
index (lists of page numbers on which various words occur).  We 
have a list of 1000 index terms (words that will appear in the index).

b) One approach: for each index term, scan the entire book looking for 
occurrences of it:

for (int t = 0; t < 1000; t ++)
	 for (int p = 1; p <= 1000; p ++)
	 	 if (term[t] occurs on page[p])
	 	 	 add p to the list of occurrences for term[t];

c) An alternate approach: scan the entire book page by page, looking 
for index terms that occur on that page

for (int p = 1; p <= 1000; p ++)
	 for (int t = 0; t < 1000; t ++)
	 	 if (page[p] contains term[t])
	 	 	 add p to the list of occurrences for term[t];

d) Which approach works better with the data cache?

(1)Since a typical page contains about 2000 characters, it is 
clear that the entire book is many times bigger than the 
cache.  However, it should be easily possible to hold the 
entire array of index terms in the cache.  (1000 terms @ < 10 
characters)

43



(2) If we use the first approach, each time we encounter a page 
we will have a series of cache misses for all the text on the 
page.  (The text for the page will long ago have been 
replaced in the cache by the text for some other page)  [ Of 
course, when we miss for one character, we read an entire 
block into the cache, so the next seven characters will be hits 
(assuming ASCII-coded text) ].  Thus, the total number of 
misses is about

(1000 iterations of outer loop) * (1000 * 2000 / 8) misses =
250 million misses (+ a small number of misses for the 
index terms)

(3) If we use the second approach, each page of the book only 
needs to be scanned only once; and the array of index terms, 
once it is first read into the cache from main memory, can 
remain (though some entries may be bumped by text from 
the book and have to be reread on occasion)  Thus, the total 
number of misses is about

1000 * 2000 / 8 = 250,000 misses (+ a number of misses for 
the index terms that is slightly bigger than in the last 
example, though still relatively small) 

(4) If the miss penalty is 10 ns, then the difference between the 
two amounts to over 2 seconds - not a lot of time, but this 
illustrates a general problem that can arise.

3. As another example, consider the following program, which runs on a 
system that has a virtual memory system that limits each process to 
having 10,000 pages of size 4096 bytes resident at any one time.

// x is a very large 2-dimensional array of reals
// over 268 million elements = 1 GB at 4 bytes/float

float x [ 16384 ] [ 16384 ];

44



// Calculate the average of elements in x

double sum = 0;
for (int i=0; i < 16384; i ++)
	 for (int j=0; j < 16384; j ++)
	 	 sum += x[j][i];
double average = sum / (16384*16384);

Now consider how the array x is stored in memory.  It will occupy 
1 GB / 4096 bytes/page = 256 * 1024 pages, with 1024 array elements 
on each page. Most programming languages (including C++) arrange 
the elements are arranged in row major order, looking like this:

This means that successive elements in the same column but different 
rows are 16 pages apart - e.g. x[0][0] is on page 0, but x[1][0] is on 
page 16.  

This means that 16384 different pages are referenced while processing 
the first column.  If FIFO page replacement is used (or something akin 
to it), then Page 0 will have been replaced by the time we finish the 
first iteration of the outer loop.  Thus, when we go to process x[0][1], 
the page on which it resides (which would have been brought into 

45

x[0][0]
x[0][1]
...
x[0][1023]
x[0][1024]
x[0][1025]
...
x[0][2047]
x[0][2048]
x[0][2049]
...
...
...
...
x[0][16383]

Page 0

Page 1

x[1][0]
x[1][1]
...
x[1][1023]

Page 15

Page 16

... ...

Page 17



main memory to access x[0][0]) will no longer be resident, and we 
will have to get it again from disk.  

In fact, if no elements of the array are resident in memory to begin 
with, we will have a page fault for every element of the array - over 
268 million faults in all.  If each fault requires 10 ms to resolve, the 
total time just for handling page faults will be over 2,680,000 seconds 
= more than 745 hours!

4. Suppose, on the other hand, that we just switch the order of the two 
subscripts of x in the line that accumulates the sum, so we have:
sum += x[i][j];

5. Now we process all of the elements on Page 0 first, then all of the 
elements on Page 1 ...  In  fact, we only process each page once, 
resulting in a maximum of 16384 page faults - requiring about 164 
seconds to handle!

6. The two approaches would also differ somewhat in terms of how 
efficiently they use the cache, but in this case the difference in 
terms of virtual memory usage is certainly enough to settle the 
efficiency question.

7. BTW, most programming languages store two dimensional arrays 
in row major order - so the order of processing
for (int row = 0; row < # of rows; row ++)
	 for (int col = 0; col < # of cols; col ++)
	 	 -- process x[row][col]

tends to be much more efficient that switching rows and columns.  

8. However, FORTRAN - one of the earliest programming languages 
and one that is still used for a lot of scientific data processing 
(where large two dimensional arrays are common) uses column 
major order!  Thus, naievely translating code between FORTRAN 
and Ada/C/C++/Java can produce interesting results!

46


